Analysis of collision avoidance via ground-based laser momentum transfer

2020 
Abstract There is little potential of action in case of conjunctions where neither chaser nor target can be controlled by spacecraft operators. Nevertheless, potential collisions between such objects pose a significant threat to the space environment. In view of that, some recent studies and developments addressed the concept of momentum transfer (MT) from ground-based lasers for orbit modification and, therefore, collision avoidance. However, achievable Δv increments are highly constrained (pass geometry) and uncertain (tracking accuracy, atmospheric turbulence, object properties). Therefore, we present and study a probabilistic model for MT-based collision avoidance. We derive requirements on laser power, MT success rate, and orbit prediction uncertainty as a function of turbulence compensation capability, time to event, conjunction angle, and area-to-mass ratio. Our results demonstrate capabilities and limitations of the method given currently available technology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    2
    Citations
    NaN
    KQI
    []