Impact of Heterogeneous Perisomatic IPSC Populations on Pyramidal Cell Firing Rates

2004 
Previous computational modeling studies suggested a set of rules underlying the modulation of principal cell firing rates by heterogeneity in the synaptic parameters (peak amplitude and decay kinetics) of populations of GABAergic inputs. Here we performed dynamic clamp experiments in CA1 hippocampal pyramidal cells to test these ideas in biological neurons. In agreement with the simulation studies, the effects of increasing the event-to-event variance in a population of perisomatically injected inhibitory postsynaptic current (IPSC) peak conductances caused either an increase, decrease, or no change in the firing rates of CA1 pyramidal cells depending on the mean around which the scatter was introduced, the degree of the scatter, the depolarization that the pyramidal cell received, and the IPSC reversal potential. In contrast to CA1 pyramidal cells, both model and biological CA3 pyramidal cells responded with bursts of action potentials to sudden, step-wise alterations in input heterogeneity. In addition,...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    18
    Citations
    NaN
    KQI
    []