ARCHITECTURE-AWARE NETWORK PRUNING FOR VISION QUALITY APPLICATIONS
2019
Convolutional neural network (CNN) delivers impressive achievements in computer vision and machine learning field. However, CNN incurs high computational complexity, especially for vision quality applications because of large image resolution. In this paper, we propose an iterative architecture-aware pruning algorithm with adaptive magnitude threshold while cooperating with quality-metric measurement simultaneously. We show the performance improvement applied on vision quality applications and provide comprehensive analysis with flexible pruning configuration. With the proposed method, the Multiply-Accumulate (MAC) of state-of-the-art low-light imaging (SID) and super-resolution (EDSR) are reduced by 58% and 37% without quality drop, respectively. The memory bandwidth (BW) requirements of convolutional layer can be also reduced by 20% to 40%.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
2
Citations
NaN
KQI