Monolithic InP master oscillator power amplifier for free space optical transmissions at 1.5 µm

2018 
Interest in free space optical communications has increased in the last decades as it has many advantages over RF communications, especially for space-borne applications. However, high power, good spectral quality and beam quality are needed for efficient data transmission over long distances. To meet the need of having lightweight and compact laser sources with such qualities for FSO, semiconductor based MOPA systems (Master Oscillator Power Amplifier) have been developed. In this paper we present the experimental results and compare them to simulation results for a threesection monolithically integrated semiconductor Master Oscillator Power Amplifier emitting at 1.5 μm wavelengths, designed for LIDAR applications that can also be used for free space telecommunications. The MOPA includes a distributed feedback laser section for single mode light emission, an intermediate section for data modulation and a flared semiconductor optical amplifier section for power amplification, which allows us to generate a high power beam with good spectral characteristics. The impact of bias conditions of the different device sections and device design on performances have been studied. Single mode operation at 4 different wavelengths near 1550 nm is achieved for optical output power up to 400 mW in continuous-wave (CW) regime for a SOA current of 3 A and 800 mW for SOA pulsed operation for currents up to 5 A. Near-field profile is also analyzed for different modulator current. Small-signal dynamic response is measured and analyzed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []