Wireless Displacement Sensing Enabled by Metamaterial Probes for Remote Structural Health Monitoring

2014 
We propose and demonstrate a wireless, passive, metamaterial-based sensor that allows for remotely monitoring submicron displacements over millimeter ranges. The sensor comprises a probe made of multiple nested split ring resonators (NSRRs) in a double-comb architecture coupled to an external antenna in its near-field. In operation, the sensor detects displacement of a structure onto which the NSRR probe is attached by telemetrically tracking the shift in its local frequency peaks. Owing to the NSRR's near-field excitation response, which is highly sensitive to the displaced comb-teeth over a wide separation, the wireless sensing system exhibits a relatively high resolution ( 0.99 over 5 mm) and sensitivity (>12.7 MHz/mm in the 1-3 mm range). The sensor is also shown to be working in the linear region in a scenario where it is attached to a standard structural
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    34
    Citations
    NaN
    KQI
    []