Long-term Pannexin 1 ablation promotes structural and functional modifications in hippocampal neurons through the regulation of actin cytoskeleton and Rho GTPases activity

2021 
Enhanced activity and overexpression of Pannexin 1 (PANX1) channels contribute to neuronal pathologies, such as epilepsy and Alzheimers disease (AD). In the hippocampus, the PANX1 channels ablation alters glutamatergic neurotransmission, synaptic plasticity, and memory flexibility. Nevertheless, PANX1-knockout (KO) mice still preserve the ability to learn, suggesting that compensatory mechanisms work to stabilize neuronal activity. Here, we show that the absence of PANX1 in the adult brain promotes a series of structural and functional modifications in KO hippocampal synapses, preserving spontaneous activity. Adult CA1 neurons of KO mice exhibit enhanced excitability, complex dendritic branching, spine maturation, and multiple synaptic contacts compared to the WT condition. These modifications seem to rely on the actin-cytoskeleton dynamics as an increase in actin polymerization and an imbalance between Rac1 and RhoA GTPase activity is observed in the absence of PANX1. Our findings highlight a novel interaction between PANX1, actin, and small Rho GTPases that appear to be relevant for synapse maintenance as a long-term compensatory mechanism for PANX1 deficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    0
    Citations
    NaN
    KQI
    []