Fuzzy Random Walkers with Second Order Bounds: An Asymmetric Analysis

2017 
Edge-fuzzy graphs constitute an essential modeling paradigm across a broad spectrum of domains ranging from artificial intelligence to computational neuroscience and social network analysis. Under this model, fundamental graph properties such as edge length and graph diameter become stochastic and as such they are consequently expressed in probabilistic terms. Thus, algorithms for fuzzy graph analysis must rely on non-deterministic design principles. One such principle is Random Walker, which is based on a virtual entity and selects either edges or, like in this case, vertices of a fuzzy graph to visit. This allows the estimation of global graph properties through a long sequence of local decisions, making it a viable strategy candidate for graph processing software relying on native graph databases such as Neo4j. As a concrete example, Chebyshev Walktrap, a heuristic fuzzy community discovery algorithm relying on second order statistics and on the teleportation of the Random Walker, is proposed and its performance, expressed in terms of community coherence and number of vertex visits, is compared to the previously proposed algorithms of Markov Walktrap, Fuzzy Walktrap, and Fuzzy Newman–Girvan. In order to facilitate this comparison, a metric based on the asymmetric metrics of Tversky index and Kullback–Leibler divergence is used.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    23
    References
    7
    Citations
    NaN
    KQI
    []