MRGPRX2 signals its importance in cutaneous mast cell biology: Does MRGPRX2 connect mast cells and atopic dermatitis?

2020 
The discovery of MRGPRX2 marks an important change in MC biology, explaining non-IgE-mediated clinical phenomena relying on MCs. As receptor for multiple drugs, MRGPRX2 is crucial to drug-induced hypersensitivity. However, not only drugs, but also endogenous mediators like neuropeptides and host defense peptides activate MRGPRX2, suggesting its broad impact in cutaneous pathophysiology. Here, we give a brief overview of MRGPRX2 and its regulation by microenvironmental stimuli, which support MCs and can be altered in skin disorders, and briefly touch on the functional programs elicited by MRGPRX2 ligation. Studies in Mrgprb2-deficient mice (the murine ortholog) help illuminate MRGPRX2's function in health and disease. Recent advances in this model support the long-suspected operational unit between MCs and nerves, with MRGPRX2 being a vital component. Based on the limited evidence for a major contribution of FceRI/IgE-activated MCs to atopic dermatitis (AD), we develop the hypothesis that MRGPRX2 constitutes the missing link connecting MCs and AD, at least in selected endotypes. Support comes from the multifold changes in the MC-neuronal system of AD skin (eg greater density of MCs and closer connections between MCs and nerves, increased PAR-2/Substance P). We theorize that these deregulations suffice to initiate AD, but external triggers, many of which activating MRGPRX2 themselves (eg Staphylococcus aureus) further feed into the loop. Itch, the most burdensome hallmark of AD, is mostly non-histaminergic but tryptase-dependent, and tryptase is preferentially released upon MRGPRX2 activation. Because MRGPRX2 is a very active research field, some of the existing gaps are likely to be closed soon.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    12
    Citations
    NaN
    KQI
    []