Supersymmetric Wilson loops in two dimensions and duality.

2019 
We classify bosonic $\mathcal{N}=(2,2)$ supersymmetric Wilson loops on arbitrary backgrounds with vector-like R-symmetry. These can be defined on any smooth contour and come in two forms which are universal across all backgrounds. We show that these Wilson loops, thanks to their cohomological properties, are all invariant under smooth deformations of their contour. At genus zero they can always be mapped to local operators and computed exactly with supersymmetric localisation. Finally, we find the precise map, under two-dimensional Seiberg-like dualities, of correlators of supersymmetric Wilson loops.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []