Regularized estimation for highly multivariate log Gaussian Cox processes

2019 
Statistical inference for highly multivariate point pattern data is challenging due to complex models with large numbers of parameters. In this paper, we develop numerically stable and efficient parameter estimation and model selection algorithms for a class of multivariate log Gaussian Cox processes. The methodology is applied to a highly multivariate point pattern data set from tropical rain forest ecology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    15
    Citations
    NaN
    KQI
    []