Radical retropubic prostatectomy for prostate cancer with pelvic lymph node metastasis

2017 
Objective To investigate the safety and effectiveness of radical retropubic prostatectomy (RRP) with adjuvant androgen deprivation or external radiotherapy in the treatment of prostate cancer (PCa) with pelvic lymph node metastasis (PLNM). Methods Twenty PCa patients underwent bilateral pedal lymphangiography (PLG) preoperatively, and 11 of them received lymph node aspiration for examination of the mRNA expressions of prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) in the lymph fluid by real-time RT-PCR. All the patients were treated by RRP with extended dissection of pelvic lymph nodes, and 3 of them by external radiotherapy in addition after recovery from urinary incontinence because of positive surgical margins, followed by adjuvant androgen deprivation therapy. Results Real-time RT-PCR showed positive mRNA expressions of PSA and PSMA in the lymph fluid of the 11 patients, all pathologically confirmed with PLNM. The median intraoperative blood loss was 575 ml, with blood transfusion for 5 cases. Positive surgical margin was found in 3 cases, lymphorrhagia in 2 and urinary leakage in another 2 each. There were no such severe complications as vascular injury and rectum perforation. The patients were followed up for 6-48 (mean 42) months, during which, biochemical recurrence was observed in 12 cases at a median of 12 months postoperatively and 2 patients died at 12 and 48 months respectively. Conclusions Bilateral PLG and lymph node aspiration for examination of the mRNA expressions of PSA and PSMA in the lymph fluid help to confirm PLNM preoperatively. Radical retropubic prostatectomy with adjuvant androgen deprivation or external radiotherapy is safe and effective for the treatment of PCa with PLNM, but it should be chosen cautiously for those with Gleason 5+5.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []