Minimal microfabrication required digital microfluidic system toward point-of-care nucleic acid amplification test application for developing countries

2020 
Digital Microfluidics (DMF) has potentially been a favorable platform for point-of-care molecular diagnostics. However, its fabrication process normally relies heavily on expensive microfabrication facilities and equipment. In this work, we developed a portable, small footprint DMF device that requires minimal microfabrication work (only a small clean bench and a DIY spin coater were required) but is still capable of performing nucleic acid amplification tests. The DMF system implemented in this work could perform successfully the Loop-mediated isothermal Amplification (LAMP) reaction with samples containing extracted DNA of Plasmodium falciparum that causes Malaria in human. The LAMP reaction was conducted at the optimal temperature of 65 °C in 45 min with the total reaction volume of 1.5 µL. The results of LAMP were designed to be observable to naked eyes via the color change from pink to yellowish orange, which simplifies the readout step and eliminates the necessity for external and bulky result-reading equipment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    3
    Citations
    NaN
    KQI
    []