One-step fluorescence photoacoustictomography with the optical radiative transfermodel

2020 
We present adjoint-based Jacobian as well as gradient evaluations and corresponding reconstruction schemes to solve the fully nonlinear, optical radiative transfer modeled one-step fluorescence photoacoustic tomographic (FPAT) problem, which aims to reconstruct the map of absorption coefficient of the exogenous fluorophore from boundary photoacoustic data. The radiative transport equation (RTE) and frequency-domain photoacoustic equation have been employed to model light and photoacoustic wave propagation, respectively. Levenberg–Marquardt and Broyden–Fletcher–Goldfarb–Shanno reconstruction schemes have been used corresponding to the evaluated Jacobians and gradients, respectively. Numerical reconstructions obtained from the two schemes have been validated for scattering-dominant as well as nonscattering-dominant media in 2D. To the best of our knowledge, these are the first one-step FPAT reconstruction results in literature based on the optical RTE model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []