Rb loss and KRAS mutation are predictors of the response to platinum-based chemotherapy in pancreatic neuroendocrine neoplasm with grade 3: A Japanese multicenter pancreatic NEN-G3 study

2017 
Purpose: Patients with pancreatic neuroendocrine neoplasm grade-3 (PanNEN-G3) show variable responses to platinum-based chemotherapy. Recent studies indicated that PanNEN-G3 includes well-differentiated neuroendocrine tumor with G3 (NET-G3). Here, we examined the clinicopathologic and molecular features of PanNEN-G3 and assessed the responsiveness to chemotherapy and survival. Experimental Design: A total of 100 patients with PanNEN-G3 were collected from 31 institutions, and after central review characteristics of each histologic subtype [NET-G3 vs. pancreatic neuroendocrine carcinoma (NEC-G3)] were analyzed, including clinical, radiological, and molecular features. Factors that correlate with response to chemotherapy and survival were assessed. Results: Seventy patients analyzed included 21 NETs-G3 (30%) and 49 NECs-G3 (70%). NET-G3 showed lower Ki67-labeling index (LI; median 28.5%), no abnormal Rb expression (0%), and no mutated KRAS (0%), whereas NEC-G3 showed higher Ki67-LI (median 80.0%), Rb loss (54.5%), and KRAS mutations (48.7%). Chemotherapy response rate (RR), platinum-based chemotherapy RR, and prognosis differed significantly between NET-G3 and NEC-G3. Chemotherapeutic outcomes were worse in NET-G3 ( P KRAS , PanNENs-G3 with Rb loss and those with mutated KRAS showed significantly higher RRs to platinum-based chemotherapy than those without (Rb loss, 80% vs. normal Rb, 24%, P = 0.006; mutated KRAS , 77% versus wild type, 23%, P = 0.023). Rb was a predictive marker of response to platinum-based chemotherapy even in NEC-G3 ( P = 0.035). Conclusions: NET-G3 and NEC-G3 showed distinct clinicopathologic characteristics. Notably, NET-G3 does not respond to platinum-based chemotherapy. Rb and KRAS are promising predictors of response to platinum-based chemotherapy for PanNEN-G3, and Rb for NEC-G3. Clin Cancer Res; 23(16); 4625–32. ©2017 AACR .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    88
    Citations
    NaN
    KQI
    []