Ultrafast photo-induced dynamics across the metal-insulator transition of VO2

2017 
The transient reflectivity of VO 2 films across the metal-insulator transition clearly shows that with low-fluence excitation, when insulating domains are dominant, energy transfer from the optically excited electrons to the lattice is not instantaneous, but precedes the superheating-driven expansion of the metallic domains. This implies that the phase transition in the coexistence regime is lattice-, not electronically-driven, at weak laser excitation. The superheated phonons provide the latent heat required for the propagation of the optically-induced phase transition. For VO 2 this transition path is significantly different from what has been reported in the strong-excitation regime. We also observe a slow-down of the superheating-driven expansion of the metallic domains around the metal-insulator transition, which is possibly due to the competition among several co-existing phases, or an emergent critical-like behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    9
    References
    5
    Citations
    NaN
    KQI
    []