Scanning capacitance microscope methodology for quantitative analysis of p-n junctions

1999 
Quantification of dopant profiles in two dimensions (2D) for p-n junctions has proven to be a challenging problem. The scanning capacitance microscope (SCM) capability for p-n junction imaging has only been qualitatively demonstrated. No well-established physical model exists yet for the SCM data interpretation near the p-n junction. In this work, the experimental technique and conversion algorithm developed for nonjunction samples are applied to p-n junction quantification. To understand the SCM response in the active p-n junction region, an electrical model of the junction is proposed. Using one-dimensional secondary ion mass spectrometry (SIMS) data, the carrier distribution in the vertical dimension is calculated. The SIMS profile and carrier distribution is then compared with the SCM data converted using a first-order model. It is shown that for a certain class of profiles, the SCM converted dopant profile fits well to the SIMS data in one dimension. Under this condition, it is possible to identify t...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    77
    Citations
    NaN
    KQI
    []