FeNiP/MoOx Integrated Electrode Grown on Monocrystalline NiMoO4 Nanorods with Multi-Interface for Accelerating Alkaline Hydrogen Evolution Reaction
2021
ABSTRACT Transition metal phosphides are promising candidates for alkaline hydrogen evolution reaction (HER), but the activation of H2O molecule is deficient. We adopt an interface engineering strategy to synthesize a hierarchical FeNiP/MoOx integrated electrode with multi-interface grown on monocrystalline NiMoO4 nanorods. Such catalyst exhibits remarkable alkaline HER performance with a low overpotential of 97 mV at the current density of 100 mA·cm-2 and sustainable durability over 20 h. Experimental and theoretical results reveal that interfaces among Fe2P, Ni5P4, and MoOx can efficiently activate H2O molecules and facilitate H desorption. Moreover, employing FeNiP/MoOx/NiMoO4/NF as a cathode, the cell voltage as low as 1.62 V to achieve a current density of 100 mA·cm-2, with admirable durability over 20 h for alkaline water splitting (1.0 M NaOH + 0.5 M NaCl). This work offers a new avenue to rationally design a 3D robust, cost-effective catalyst with multi-interface for large-scale practical hydrogen production.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
0
Citations
NaN
KQI