Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals.

2021 
Among physical stimulation modalities, magnetism has clear advantages, such as deep penetration and untethered interventions in biological subjects. However, some of the working principles and effectiveness of existing magnetic neurostimulation approaches have been challenged, leaving questions to be answered. Here we introduce m-Torquer, a magnetic toolkit that mimics magnetoreception in nature. It comprises a nanoscale magnetic torque actuator and a circular magnet array, which deliver piconewton-scale forces to cells over a working range of ~70 cm. With m-Torquer, stimulation of neurons expressing bona fide mechanosensitive ion channel Piezo1 enables consistent and reproducible neuromodulation in freely moving mice. With its long working distance and cellular targeting capability, m-Torquer provides versatility in its use, which can range from single cells to in vivo systems, with the potential application in large animals such as primates. A magnetic torque actuator has been developed and is capable of modulation of neurons expressing the mechanosensitive ion channel, Piezo1, resulting in long-distance control of locomotion of mice.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    14
    Citations
    NaN
    KQI
    []