Nerve growth factor-induced rapid reorganization of microfilaments in PC12 cells: Possible roles of different second messenger systems

1990 
Abstract Nerve growth factor (NGF) induces in 2 to 10 min the redistribution of F-actin in rat pheochromocytoma PC12 cells. The NGF specificity of this phenomenon was shown by blocking it with anti-NGF antibodies. We used the rapid F-actin redistribution as an assay to study NGF second messenger systems and their inhibition or activation by specific agents. The results show that the NGF-induced effect on the microfilament system of PC12 cells can be specifically inhibited by lithium chloride and neomycin, inhibitors of the phosphoinositol system, but cannot be mimicked by TPA and acetylcholine, the activators of the phosphoinositol system. An increase in the intracellular concentration of cyclic AMP by addition of dBcAMP (but not dBcGMP) caused rapid F-actin redistribution that nonetheless differed from the NGF-induced effect. Changes in the intracellular calcium level did not have any influence on the microfilament system of PC12 cells. The specificity of the inhibition of NGF-induced effects by methylase inhibitors was questionable, since MTA- or SAH-treated PC12 cells acquired an altered morphology even in the absence of NGF or dBcAMP. Using the microfilament- and microtubule-disrupting drugs cytochalasin B and colchicine, we showed that the microtubule system in PC12 cells is required for the initiation of neurite outgrowth and that microfilament-associated filopodial activity does not appear to be necessary.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    27
    Citations
    NaN
    KQI
    []