Pharmacological inhibition of O-GlcNAcase (OGA) prevents cognitive decline and amyloid plaque formation in bigenic tau/APP mutant mice
2014
Background: Amyloid plaques and neurofibrillary tangles (NFTs) are the defining pathological hallmarks of Alzheimer’s disease (AD). Increasing the quantity of the O-linked N-acetylglucosamine (O-GlcNAc) post-translational modification of nuclear and cytoplasmic proteins slows neurodegeneration and blocks the formation of NFTs in a tauopathy mouse model. It remains unknown, however, if O-GlcNAc can influence the formation of amyloid plaques in the presence of tau pathology. Results: We treated double transgenic TAPP mice, which express both mutant human tau and amyloid precursor protein (APP), with a highly selective orally bioavailable inhibitor of the enzyme responsible for removing O-GlcNAc (OGA) to increase O-GlcNAc in the brain. We find that increased O-GlcNAc levels block cognitive decline in the TAPP mice and this effect parallels decreased β-amyloid peptide levels and decreased levels of amyloid plaques. Conclusions: This study indicates that increased O-GlcNAc can influence β-amyloid pathology in the presence of tau pathology. The findings provide good support for OGA as a promising therapeutic target to alter disease progression in Alzheimer disease.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
60
References
94
Citations
NaN
KQI