Thermally-induced Chiral Aggregation of Dihydrobenzopyrenone on Au(111)
2020
The realization of chiral supramolecular architectures on solid surfaces has triggered much interest due to its potential enantiospecific applications. An in-depth study of chiral aggregation on surfaces is significant for developing functional chiral surfaces. Herein, we report thermally induced chiral aggregation of dihydrobenzopyrenone on Au(111). By high-resolution low-temperature scanning tunneling microscopy, a racemate monolayer consisting of levorotatory and dextrorotatory dihydrobenzopyrenones was found to aggregate into conglomerate domains after moderate annealing treatment. Combined with first-principles calculations, we suggest that the intermolecular dipole-dipole interaction plays an important role in chiral aggregation, which takes place via molecular in-plane diffusion rather than molecular out-of-plane flipping. This work unveils one underlying mechanism of thermally induced chiral aggregation, thus enabling potential applications such as fabricating supramolecular architectures for functional chiral surfaces.
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
0
Citations
NaN
KQI