Efficient energy transfer from hole transporting materials to CdSe-core CdS/ZnCdS/ZnS-multishell quantum dots in type II aligned blend films

2011 
We studied the energy transfer between CdSe core/shell quantum dots (QDs) and hole transporting materials (HTMs) in type II aligned inorganic/organic blend films by using steady-state and time-resolved photoluminescence (PL) spectroscopy. The lengthening and shortening in PL lifetimes of the QDs in HTMs under resonant excitation condition were explained by energy transfer and charge separation processes. Surprisingly, the maximum energy transfer efficiency from 4,4′,4″-Tris (carbazol-9-yl)-triphenylamine (TcTa) to CdSe/CdS/ZnCdS/ZnS core/multishell QDs was determined to be 86% by calculating the excited state lifetime of the TcTa molecules participating in the energy transfer process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    20
    References
    17
    Citations
    NaN
    KQI
    []