Contextual anomaly detection framework for big sensor data

2015 
The ability to detect and process anomalies for Big Data in real-time is a difficult task. The volume and velocity of the data within many systems makes it difficult for typical algorithms to scale and retain their real-time characteristics. The pervasiveness of data combined with the problem that many existing algorithms only consider the content of the data source; e.g. a sensor reading itself without concern for its context, leaves room for potential improvement. The proposed work defines a contextual anomaly detection framework. It is composed of two distinct steps: content detection and context detection. The content detector is used to determine anomalies in real-time, while possibly, and likely, identifying false positives. The context detector is used to prune the output of the content detector, identifying those anomalies which are considered both content and contextually anomalous. The context detector utilizes the concept of profiles, which are groups of similarly grouped data points generated by a multivariate clustering algorithm. The research has been evaluated against two real-world sensor datasets provided by a local company in Brampton, Canada. Additionally, the framework has been evaluated against the open-source Dodgers dataset, available at the UCI machine learning repository, and against the R statistical toolbox.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    80
    Citations
    NaN
    KQI
    []