Combinatorial Prediction Markets: An Experimental Study

2013 
Prediction markets produce crowdsourced probabilistic forecasts through a market mechanism in which forecasters buy and sell securities that pay off when events occur. Prices in a prediction market can be interpreted as consensus probabilities for the corresponding events. There is strong empirical evidence that aggregate forecasts tend to be more accurate than individual forecasts, and that prediction markets are among the most accurate aggregation methods. Combinatorial prediction markets allow forecasts not only on base events, but also on conditional events (e.g., “A if B”) and/or Boolean combinations of events. Economic theory suggests that the greater expressivity of combinatorial prediction markets should improve accuracy by capturing dependencies among related questions. This paper describes the DAGGRE combinatorial prediction market and reports on an experimental study to compare combinatorial and traditional prediction markets. The experiment challenged participants to solve a “whodunit” murder mystery by using a prediction market to arrive at group consensus probabilities for characteristics of the murderer, and to update these consensus probabilities as clues were revealed. A Bayesian network was used to generate the “ground truth” scenario and to provide “gold standard" probabilistic predictions. The experiment compared predictions using an ordinary flat prediction market with predictions using a combinatorial market. Evaluation metrics include accuracy of participants’ predictions and the magnitude of market updates. The murder mystery scenario provided a more concrete, realistic, intuitive, believable, and dynamic environment than previous empirical work on combinatorial prediction markets.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []