GHz Rabi flopping to Rydberg states in hot atomic vapor cells

2011 
We report on the observation of Rabi oscillations to a Rydberg state on a time scale below 1 ns in thermal rubidium vapor. We use a bandwidth-limited pulsed excitation and observe up to 6 full Rabi cycles within a pulse duration of {approx}4 ns. We find good agreement between the experiment and numerical simulations based on a surprisingly simple model. This result shows that fully coherent dynamics with Rydberg states can be achieved even in thermal atomic vapor, thus suggesting small vapor cells as a platform for room-temperature quantum devices. Furthermore, the result implies that previous coherent dynamics in single-atom Rydberg gates can be accelerated by 3 orders of magnitude.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    55
    Citations
    NaN
    KQI
    []