Microbial Precipitation of Cr(III)-Hydroxide and Se(0) Nanoparticles During Anoxic Bioreduction of Cr(VI)- and Se(VI)-Contaminated Water
2017
: This study examined the microbial precipitations of Cr(III)-hydroxide and Se(0) nanoparticles during anoxic bioreductions of Cr(VI) and Se(VI) using metal-reducing bacteria enriched from groundwater. Metal-reducing bacteria enriched from groundwater at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT), Daejeon, S. Korea were used. Metal reduction and precipitation experiments with the metal-reducing bacteria were conducted using Cr(VI)- and Se(VI)-contaminated water and glucose as a carbon source under an anaerobic environment at room temperature. XRD, SEM-EDX, and TEM-EDX analyses were used to characterize the mineralogy, crystal structure, chemistry, shape, and size distribution of the precipitates. The metal-reducing bacteria reduced Cr(VI) of potassium chromate (K₂CrO₄) to Cr(III) of chromium hydroxide [Cr(OH)3], and Se(VI) of sodium selenate (Na₂SeO₄) to selenium Se(0), with changes of color and turbidity. XRD, SEM-EDX, and TEM-EDX analyses revealed that the chromium hydroxide [Cr(OH)₃] was formed extracellularly with nanoparticles of 20–30 nm in size, and elemental selenium Se(0) nanoparticles had a sphere shape of 50–250 nm in size. These results show that metal-reducing bacteria in groundwater can aid or accelerate precipitation of heavy metals such as Cr(VI) and Se(VI) via bioreduction processes under anoxic environments. These results may also be useful for the recovery of Cr and Se nanoparticles in natural environments.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
3
Citations
NaN
KQI