Effect of Cooling Rate and Vanadium Content on the Microstructure and Hardness of Medium Carbon Forging Steel

2016 
This paper reports the effect of cooling rate on the microstructure and hardness of a kind of medium carbon steel microalloyed with two levels of V content (0.15% and 0.28%) after hot deformation by using single compression tests on a Gleeble-3800 thermal simulator. The results show that cooling rate has a significant effect on the microstructure and hardness of the tested steels. Both the fraction of pearlite and hardness increase with increasing cooling rate, whereas a further increase of the cooling rate above a critical value promotes the formation of acicular ferrite (AF), and thus leads to a decrease of hardness mainly owing to the decrease of pearlite fraction and replacing it by AF and the less effective precipitation strengthening. Increasing V content results in a significant increase of hardness, and this tendency enhances with increasing cooling rate until the formation of AF. Furthermore, increasing V content also significantly enhances the formation of AF structure at a lower cooling rate. The results also suggest that by controlling microstructure, especially the precipitation of fine V(C,N) particles through adjusting post-forging cooling, the strengthening and gradient function in one hot-forging part could be obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    29
    Citations
    NaN
    KQI
    []