COVID19: Exploring uncommon epitopes for a stable immune response through MHC1 binding

2020 
The COVID19 pandemic has resulted in 1,092,342 deaths as of 14th October 2020, indicating the urgent need for a vaccine. This study highlights novel protein sequences generated by shot gun sequencing protocols that could serve as potential antigens in the development of novel subunit vaccines and through a stringent inclusion criterion, we characterized these protein sequences and predicted their 3D structures. We found distinctly antigenic sequences from the SARS-CoV-2 that have led to identification of 4 proteins that demonstrate an advantageous binding with Human leukocyte antigen-1 molecules. Results show how previously unexplored proteins may serve as better candidates for subunit vaccine development due to their high stability and immunogenicity, reinforce by their HLA-1 binding propensities and low global binding energies. This study thus takes a unique approach towards furthering the development of vaccines by employing multiple consensus strategies involved in immuno-informatics technique.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    0
    Citations
    NaN
    KQI
    []