Механизмы микрореологических ответов эритроцитов на действие газотрансмиттеров — оксида азота и сероводорода:

2020 
Introduction. Erythrocytes are highly specialized cells; oxygen transport is their main function. They have no nucleus and mitochondria, but they saved many elements of molecular signaling pathways. When erythrocytes performed the transport function they change their mechanical properties, deformed and combined into complexes — aggregates. There are some data that erythrocytes change their mechanical properties under the influence of signaling molecules such as gas mediators or gasotransmitters (GTs) — nitric oxide (NO), carbon monoxide and hydrogen sulfide. Aim: to study the microrheological responses of erythrocytes on the action of number GTs-donors — nitric oxide and hydrogen sulfide. Materials and methods. After erythrocytes incubation with NO-donors (spermine and sodium nitroprusside) and donor of hydrogen sulfide (sodium hydrosulfide) we registered erythrocytes deformability, their aggregation and viscosity of cell suspensions (hematocrit — 40%, viscosity of suspension medium — 1.30 mPa × s; Ringer’s solution and dextran-200). To clarify the mechanisms of GTs action on microrheological properties of erythrocytes they were incubated with acetylcholine, serotonin and forskolin. Results. GTs noticeably changed erythrocytes micromechanical properties. Sodium nitroprusside caused significant shifts of erythrocytes microrheology, especially of erythrocytes aggregation. Sodium hydrosulfide moderately but statistically significant increased erythrocytes deformability and markedly reduced erythrocytes aggregation, but its effects were inferior to that of sodium nitroprusside. Conclusion. The study results suggest that guanylate cyclase and adenylate cyclase, as well as the ion channels of the cell membrane can be the intracellular signaling pathways in erythrocytes for investigated GTs. REFERENCES: ArtmannG.M. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber. Biorheology. 1995;32(5):553–70. DOI: 10.1016/0006–355X(95)00032–5. Cokelet G.B., Meiselman H.J. Rheological comparison of hemoglobin solutions and erythrocyte suspensions. Science. 1968;162(3850):275–7. DOI: 10.1126/science.162.3850.275. Muravyov A.V., Tikhomirova I.A. Signaling pathways regulating red blood cell aggregation. Biorheology. 2014;51(2–3):135–45. DOI: 10.3233/BIR-140664. Mustafa A.K., Gadalla M.M., Snyder S.H. Signaling by gasotransmitters. Sci Signal. 2009;2(68):re2. DOI: 10.1126/scisignal.268re2. MuravyovA.V.,TikhomirovaI.A.,AkhapkinaA.A. etal. Micromechanical responses of human erythrocytes to stimulation of membrane receptors, ion channels, and enzymes. [Mikromekhanicheskie otvety eritrocitov cheloveka na stimulirovanie membrannyh receptorov, ionnyh kanalov i fermentov]. Rossijskij zhurnal biomekhaniki. 2016;20(1): 28–36. (In Russ.). DOI: 10.15593/RZhBiomeh/2016.1.02. Chien S., Sung L.P. Molecular basis of red cell membrane rheology. Part 1. Biorheology. 1990;27(3–4):327–44. Petrov V., Lijnen P. Regulation of human erythrocyte Na + /H + exchange by soluble and particulate guanylate cyclase. Am J Physiol. 1996;271(5 Pt 1):1556–64. DOI: 10.1152/ajpcell.1996.271.5.C1556. Nunomura W., Takakuwa Y. Regulation of protein 4.1R interactions with membrane proteins by Ca2 + and calmodulin. Front Biosci. 2006;11(2):1522–39. DOI: 10.2741/1901. Sitdikova G.F. Zefirov A.L. Gaseousmessengers in the nervous system. [Gazoobraznye posredniki v nervnoj sisteme]. Rossijskij fiziologicheskij zhurnal im. I.M. Sechenova. 2006;92(7):872–82. (In Russ.). Kimura H. Hydrogen sulfide and polysulfides as biological mediators. Molecules. 2014;19(10):16146–57. DOI: 10.3390/molecules191016146. Uyuklu M., Meiselman H.J., Baskurt O.K. Role of hemoglobin oxygenation in the modulation of red blood cell mechanical properties by nitric oxide. Nitric Oxide. 2009;21(1):20–6. DOI: 10.1016/j. niox.2009.03.004. Nash G.B., Meiselman H.J. Effect of dehydration on the viscoelastic behavior of red cells. Blood Cells. 1991;17(3):517–22; discussion 523–5. Bor-Kucukatay M., Wenby R.B., Meiselman H.J., Baskurt O.K. Effects of nitric oxide on red blood cell deformability. Am J Physiol Heart Circ Physiol. 2003;284(5):H1577–84. DOI: 10.1152/ajpheart.00665.2002. Oonishi T., Sakashita K., Uysaka N. Regulation of red blood cell filterability by Ca2 + influx and cAMP-mediated signaling pathways. Am J Physiol. 1997;273(6):1828–34. DOI: 10.1152/ ajpcell.1997.273.6.C1828. Derkach K.V., Shpakov A.O., Uspenskaya Z.I., Yudin A.L. Molecular mechanisms of action of natural amino acids and serotonin on infusorian adenylyl cyclase and guanylyl cyclase. [Molekulyarnye mekhanizmy dejstviya prirodnyh aminokislot i serotonina na adenilatciklazu i guanilatciklazu infuzorij]. Citologiya. 2012;54(3):270–7. (In Russ.). Taqatqeh F., Mergia E., Neitz A. et al. More than a retrograde messenger: nitric oxide needs two cGMP pathways to induce hippocampal long-term potentiation. J Neurosci. 2009;29(29):9344–50. DOI: 10.1523/JNEUROSCI.1902–09.2009. Tang L.C., Schoomaker E., Wiesmann W.P. Cholinergic agonists stimulate calcium uptake and cGMP formation in human erythrocytes. Biochim Biophys Acta. 1984;772(2):235–8. DOI: 10.1016/0005– 2736(84)90050–6. Martelli A., Testai L., Breschi M.C. et al. Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res. 2013;70(1):27–34. DOI: 10.1016/j.phrs.2012.12.005. Bubolz A.H., Li H., Wu Q., Liu Y. Enhanced oxidative stress impairs cAMP-mediated dilation by reducing Kv channel function in small coronary arteries of diabetic rats. Am J Physiol Heart Circ Physiol. 2005; 289(5):H1873–80. DOI: 10.1152/ajpheart.00357.2005. Gonzalez-Domenech C.M., Munoz-Chapuli R. Molecular evolution of nitric oxide synthases in metazoans. Comp Biochem Physiol Part D Genomics Proteomics. 2010;5(4):295–301. DOI: 10.1016/j. cbd.2010.08.004. Mozar A., Connes P., Collins B. et al. Red blood cell nitric oxide synthase modulates red blood cell deformability in sickle cell anemia. Clin Hemorheol Microcirc. 2016;64(1):47–53. DOI: 10.3233/CH-162042. Coletta C., Papapetropoulos A., Erdelyi K. et al. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA. 2012;109(23):9161–6. DOI: 10.1073/pnas.1202916109. Tkachuk V.A. Introduction to molecular endocrinology. [Vvedenie v molekulyarnuyu endokrinologiyu]. Moskva: Izd-vo MGU, 1983. 256 s. (In Russ.). McNamara D.B., Kadowitz P.J., Hyman A.L., Ignarro L.J. Adenosine 3’,5’-monophosphate formation by preparations of rat liver soluble guanylate cyclase activated with nitric oxide, nitrosyl ferroheme, S-nitrosothiols, and other nitroso compounds. Can J Physiol Pharmacol. 1980;58(12):1446–56. DOI: 10.1139/y80–219. Mittal C.K., Braughler J.M., Ichihara K., Murad F. Synthesis of adenosine 3’,5’-monophosphate by guanylate cyclase, a new pathway for its formation. Biochim Biophis Acta. 1979;585(3):333–42. DOI: 10.1016/0304–4165(79)90078–3. MuravyovA.V., TikhomirovaI.A.Role Ca2 + in mechanisms of the red blood cells microrheological changes. Adv Exp Med Biol. 2012;740:1017–38. DOI: 10.1007/978-94-007-2888-2_47. Lim I., Gibbons S.J., Lyford G.L. et al. Carbon monoxide activates human intestinal smooth muscle L-type Ca2 + channels through a nitric oxide-dependent mechanism. Am J Physiol Gastrointest Liver Physiol. 2005;288(1): G7–14. DOI: 10.1152/ajpgi.00205.2004. KoE.A.,HanJ.,JungI.D.,ParkW.S.PhysiologicalrolesofK + channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44(2):65–81. DOI: 10.1540/jsmr.44.65. KolesnikovS.I.,VlasovB.Ya.,KolesnikovaL.I.Hydrogenasathird essential gas molecule in living tissues. [Serovodorod kak tret’ya essencial’naya gazovaya molekula zhivyh tkanej]. Vestnik RAMN. 2015;70(2):237–41. (In Russ.). DOI: 10.15690/vravn.v70i21318. Huang S., Li H., Ge J. A cardioprotective insight of the cystathionine γ-lyase/hydrogen sulfide pathway. Int J Cardiol Heart Vasc. 2015;7:51–7. DOI: 10.1016/j.ijcha.2015.01.010.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []