Afferent specificity, feature specific connectivity influence orientation selectivity: A computational study in mouse primary visual cortex

2013 
Primary visual cortex (V1) provides crucial insights into the selectivity and emergence of specific output features such as orientation tuning. Tuning and selectivity of cortical neurons in mouse visual cortex is not equivocally resolved so far. While many in-vivo experimental studies found inhibitory neurons of all subtypes to be broadly tuned for orientation other studies report inhibitory neurons that are as sharply tuned as excitatory neurons. These diverging findings about the selectivity of excitatory and inhibitory cortical neurons prompted us to ask the following questions: (1) How different or similar is the cortical computation with that in previously described species that relies on map? (2) What is the network mechanism underlying the sharpening of orientation selectivity in the mouse primary visual cortex? Here, we investigate the above questions in a computational framework with a recurrent network composed of Hodgkin-Huxley (HH) point neurons. Our cortical network with random connectivity alone could not account for all the experimental observations, which led us to hypothesize, (a) Orientation dependent connectivity (b) Feedforward afferent specificity to understand orientation selectivity of V1 neurons in mouse. Using population (orientation selectivity index) OSI as a measure of neuronal selectivity to stimulus orientation we test each hypothesis separately and in combination against experimental data. Based on our analysis of orientation selectivity (OS) data we find a good fit of network parameters in a model based on afferent specificity and connectivity that scales with feature similarity. We conclude that this particular model class best supports data sets of orientation selectivity of excitatory and inhibitory neurons in layer 2/3 of primary visual cortex of mouse.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    6
    Citations
    NaN
    KQI
    []