Efficient radial tagging CMR exam: A coherent k‐space reading and image reconstruction approach

2017 
Purpose Cardiac MR tagging techniques, which facilitate the strain evaluation, have not yet been widely adopted in clinics due to inefficiencies in acquisition and postprocessing. This problem may be alleviated by exploiting the coherency in the three steps of tagging: preparation, acquisition, and reconstruction. Herein, we propose a fully polar-based tagging approach that may lead to real-time strain mapping. Methods Radial readout trajectories were used to acquire radial tagging images and a Hankel-based algorithm, referred to as Polar Fourier Transform (PFT), has been adapted for reconstruction of the acquired raw data. In both phantom and human subjects, the overall performance of the method was investigated against radial undersampling and compared with the conventional reconstruction methods. Results Radially tagged images were reconstructed by the proposed PFT method from as few as 24 spokes with normalized root-mean-square-error of less than 3%. The reconstructed images showed a central focusing behavior, where the undersampling effects were pushed to the peripheral areas out of the central region of interest. Comparing the results with the re-gridding reconstruction technique, superior image quality and high robustness of the method were further established. In addition, a relative increase of 68 ± 2.5% in tagline sharpness was achieved for the PFT images and also higher tagging contrast (72 ± 5.6%), resulted from the well-tolerated undersampling artifacts, was observed in all reconstructions. Conclusion The proposed approach led to the acceleration of the acquisition process, which was evaluated for up to eight-fold retrospectively from the fully sampled data. This is promising toward real-time imaging, and in contrast to iterative techniques, the method is consistent with online reconstruction. Magn Reson Med, 2016. © 2016 Wiley Periodicals, Inc.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    2
    Citations
    NaN
    KQI
    []