Abstract 378: Red Blood Cells From Patients With Type 2 Diabetes Induce Endothelial Dysfunction Through Up-Regulation of Arginase I
2017
We previously showed that increased arginase activity is a key mechanism for endothelial dysfunction in patients with type 2 diabetes mellitus (T2DM) thereby arginase inhibition improves endothelial function. Recently, we demonstrated a crucial role of red blood cells (RBCs) in control of cardiac function via an arginase-dependent regulation of nitric oxide export from RBCs, suggesting a direct interaction of RBCs with cardiovascular function. Considering an increase in arginase activity in T2DM, we hypothesized that RBCs induce endothelial dysfunction in T2DM via up-regulated arginase I. Healthy rat aortas were incubated with RBCs from patients with T2DM (T2DM-RBCs) and age-matched healthy subjects (H-RBCs) for 18 h in the absence and presence of the arginase inhibition or scavenging of reactive oxygen/nitrogen species (ROS/RNS). Following the incubation, endothelium-dependent and -independent relaxations (EDR and EIR) were determined using wire myograph. Human internal mammary arteries (IMAs) obtained from non-diabetic patients who underwent cardiac surgery were also incubated with RBCs for functional evaluation. Arginase activity and protein expression were determined in RBCs. EDR was impaired in vessels incubated with T2DM-RBCs (Emax: 43.2±3.0% in aortas, n=8; 32.3±2.7% in IMAs, n=3) but not H-RBCs (Emax: 74.3±3.4% in aortas; 71.5±5.1% in IMAs) in comparison with buffer (Emax: 74.4±2.3% in aortas; 73.1±5.0% in IMAs; P
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI