Dual self-assembly of supramolecular peptide nanotubes to provide stabilisation in water

2019 
Self-assembling peptides have the ability to spontaneously aggregate into large ordered structures. The reversibility of the peptide hydrogen bonded supramolecular assembly make them tunable to a host of different applications, although it leaves them highly dynamic and prone to disassembly at the low concentration needed for biological applications. Here we demonstrate that a secondary hydrophobic interaction, near the peptide core, can stabilise the highly dynamic peptide bonds, without losing the vital solubility of the systems in aqueous conditions. This hierarchical self-assembly process can be used to stabilise a range of different β-sheet hydrogen bonded architectures. Reversibility of peptide hydrogen bonded supramolecular assemblies makes them tunable but highly dynamic and prone to disassembly at the low concentration. Here the authors show a secondary hydrophobic interaction, near the peptide core that stabilises the peptide bonds, without losing the solubility of the systems in aqueous conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    31
    Citations
    NaN
    KQI
    []