MBD3 mediates epigenetic regulation on EPAS1 promoter in cancer

2016 
Hypoxia-inducible factor 2α (HIF2α) plays critical roles in cancer progression. Although the mechanisms of HIF2α translation and degradation have been well studied, the mechanism for HIF2α regulation at transcriptional level is still not fully understood. Here, we present evidence that DNA methylation in promoter contributes to transcription of EPAS1 coding HIF2α. Methylated CpG binding protein 3 (MBD3) contributes to the intricate regulatory mechanism. We showed that MBD3 bound to the EPAS1 promoter in breast cancer cells and amplified EPAS1 transcription through demethylating CpG located around transcriptional start site in MDA-MB-468 cells. This enabled MDA-MB-468 cells to activate HIF2α-mediated angiogenesis. However, in 7860 cells, the demethylation function of MBD3 on EPAS1 was not observed because of the poor methylated-CpG promoter. Nevertheless, depletion of MBD3 induced by shRNA decreased EPAS1 transcription and therefore decreased HIF2α-mediated cellular response in both MDA-MB-468 and 7860 cancer cells. These results indicated that the endogenous MBD3 was involved in regulating the transcription and therefore the transcriptional activities of HIF2α, suggesting that MBD3 may be a potential therapeutic target of tumor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    14
    Citations
    NaN
    KQI
    []