Effects of human activity on physiological and behavioral responses of an endangered steppe bird

2015 
Animals may perceive humans as a form of predatory threat, a disturbance, triggering behavioral changes together with the activation of physiological stress responses. These adaptive responses may allow individuals to cope with stressful stimuli, but a repeated or long-term exposure to disturbances may have detrimental individual- and population-level effects. We studied the effects of human activities, particularly hunting, on the behavior and physiological status of a near-threatened nongame steppe bird, the little bustard. Using a semiexperimental approach, we compared before, during, and after weekends: 1) the type and intensity of human activities and 2) the behavior and 3) physiological stress (fecal corticosterone metabolites) of wintering birds. Higher rates of human activity, in particular those related to hunting, occurred during weekends and caused indirect disturbance effects on birds. Little bustards spent more time vigilant and flying during weekends, and more time foraging in the mornings after weekend, possibly to compensate for increased energy expenditure during weekends. We also found increased physiological stress levels during weekends, as shown by higher fecal glucocorticoid metabolite concentrations. Increased corticosterone metabolite levels were associated with the highest levels of hunting-related disturbances. Little bustard showed marked behavioral and physiological (stress hormones) responses to human activities that peaked during weekends, in particular hunting. The long-term effect of this particular activity carried out during weekends from autumn throughout winter might adversely impact wintering populations of this nongame endangered species, potentially counteracting conservation efforts conducted on local as well as foreign breeding populations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    40
    Citations
    NaN
    KQI
    []