Molecular understanding of charge storage and charging dynamics in supercapacitors with MOF electrodes and ionic liquid electrolytes

2019 
We present a computational microscopy analysis (targeted molecular dynamics simulations) of the structure and performance of conductive metal organic framework (MOF) electrodes in supercapacitors with room temperature ionic liquids. The molecular modeling predicts the characteristic shapes of the potential dependence of electrode capacitance, relying on the structure of MOF electrodes and particularly how ions transport and reside in MOFs under polarization. Transmission line model was adopted to characterize the charging dynamics process and build up a bridge to evaluate the capacitive performance of practical supercapacitor devices at macroscale from the simulation-obtained data at nanoscale. Such nanoscale-to-macroscale analysis demonstrates the potential of MOF supercapacitors for achieving unprecedentedly high volumetric energy and power densities. The investigation gives molecular insights into the preferred structures of MOF for achieving these results, which could provide a blueprint for future experimental characterization of these new systems.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    141
    Citations
    NaN
    KQI
    []