Managing energy infrastructure to decarbonize industrial parks in China

2020 
Industrial parks are flourishing globally and are mostly equipped with a shareable energy infrastructure, which has a long service lifetime and thus locks in greenhouse gas (GHG) emissions. We conducted a two-phase study to decarbonize Chinese industrial parks by targeting energy infrastructure. Firstly, a high-resolution geodatabase of energy infrastructure in 1604 industrial parks was established. These energy infrastructures largely featured heavy coal dependence, small capacities, cogeneration of heat and power, and were young in age. Cumulative GHG emissions, during their remaining lifetime, will reach 46.2 Gt CO2 equivalent(eq.); comparable to  the 11% of the 1.5 °C global carbon budget. Secondly, a vintage stock model was developed by tailoring countermeasures for each unit and implementing a cost-benefit analysis and life cycle assessment. Total GHG mitigation potential was quantified as 8%~16% relative to the baseline scenario with positive economic benefits. The synergistic reductions in freshwater consumption, SO2 emissions, and NOx emissions will stand at rates of 34~39%, 24%~31% and 10%~14%, respectively. The contributions of industrial parks towards addressing climate change remains unclear. Here, the authors studied the energy infrastructure of 1604 industrial parks in China and found that by decarbonizing energy infrastructure stocks in the industrial parks, the GHG mitigation potential will achieve 8%~16% relative to the GHG emissions in the baseline scenario with positive economic benefits, water savings and air pollutant emission reductions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    14
    Citations
    NaN
    KQI
    []