CFH loss in human RPE cells leads to inflammation and complement system dysregulation via the NF-κB pathway

2021 
Age-related macular degeneration (AMD), the leading cause of vision loss in the elderly, is a degenerative disease of the macula, where retinal pigment epithelium (RPE) cells are damaged in the early stages of the disease and chronic inflammatory processes may be involved. Besides ageing and lifestyle factors as drivers of AMD, a strong genetic association to AMD is found in genes of the complement system, with a single polymorphism in the complement factor H gene (CFH), accounting for the majority of AMD risk. However, the exact mechanism by which CFH dysregulation confers such a great risk for AMD and its role in RPE cells homeostasis is unclear. To explore the role of endogenous CFH locally in RPE cells, we silenced CFH in human hTERT-RPE1 cells. We demonstrate that endogenously expressed CFH in RPE cells modulates inflammatory cytokine production and complement regulation, independent of external complement sources or stressors. We show that loss of the factor H protein (FH) results in increased levels of inflammatory mediators (e.g. IL-6, IL-8, GM-CSF) and altered levels of complement proteins (e.g. C3, CFB upregulation and C5 downregulation) that are known to play a role in AMD. Moreover, we identified the NF-{kappa}B pathway as the major pathway involved in the regulation of these inflammatory and complement factors. Our findings suggest that in RPE cells, FH and the NF-{kappa}B pathway work in synergy to maintain inflammatory and complement balance and in case either one of them is dysregulated, the RPE microenvironment changes towards a pro-inflammatory AMD-like phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []