Using agent based simulation to empirically examine complexity in carbon footprint business process

2009 
Through the critical analysis of the extant literature, it is observed that Simulation is widely used as a research method in Natural Sciences, Engineering and Social Sciences, in addition to argumentation and formalisation as the third way of carrying out research. Simulation is not so widely used in Business and Management research as it ought to have been, though this is changing for the better with the technological advances in computers and their computational power. These technological advances enhance the capability of theoretical research models, in defining a problem and their use in empirically examining a solution to the problem in simulated reality, like never before. Management journal searches for “Simulation and Complexity Theory” returned nil or zero returns, which explain that this combination is not popular in management research, though they are used individually more often. The major objective of this paper is to analyse some of the conceptual (or theoretical) and methodological (or empirical) contributions that Agent Based Simulation and Complexity Theory can make to the business and management community in their business process related research In view of this, some basic ideas are discussed of using Agent Based Simulation as a method in Business and Management Studies research and how an Agent Based Model can be applied to a business process as complex as Carbon Footprint. It is in this context that the use of Complexity as the base theory to empirically examine a business process is discussed. Throughout this article, our research on complex adaptive systems (e.g., Accounting Information System) in continuously changing organisations managing complex business processes (e.g., Carbon Footprint business process) is considered as the basis for illustrating some of the concepts. Through this article, avenues for further management research using these tools and methodology are suggested.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    2
    Citations
    NaN
    KQI
    []