Validation of a wearable system for 3D ambulatory L5/S1 moment assessment during manual lifting using instrumented shoes and an inertial sensor suit

2020 
Abstract This study aimed to evaluate the accuracy of 3D L5/S1 moment estimates from an ambulatory measurement system consisting of a wearable inertial motion capture system (IMC) and instrumented force shoes (FSs), during manual lifting. Reference L5/S1 moments were calculated using an inverse dynamics bottom-up laboratory model (buLABmodel), based on data from a measurement system comprising optical motion capture (OMC) and force plates (FPs). System performance of (1) a bottom-up ambulatory model (buAMBmodel) using lower-body kinematic IMC and FS data, and (2) a top-down ambulatory model (tdAMBmodel) using upper-body kinematic IMC data and hand forces (HFs) were compared. HFs were estimated using full-body kinematic IMC data and FS forces. Eight males and eight females lifted a 10-kg box from different initial vertical/horizontal positions using either a free or an asymmetric lifting style. As a measure of system performance, root-mean-square (RMS) errors were calculated between the reference (buLABmodel) and ambulatory (tdAMBmodel & buAMBmodel) moments. The results showed two times smaller errors for the tdAMBmodel (averaged RMS errors
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    5
    Citations
    NaN
    KQI
    []