The W520X mutation in the TSHR gene brings on subclinical hypothyroidism through an haploinsufficiency mechanism

2013 
Background: TSHR is a G-protein-coupled seven transmembrane domain receptor that activates the two major signal transduction pathways: the Gαs/adenylate cyclase and the Gαq/11/phospholipase C pathways. Inactivating mutations in the TSHR gene have been demonstrated to be responsible for subclinical hypothyroidism, a disorder characterized by elevated serum TSH concentrations despite normal thyroid hormones levels. Aim: We identified in a child a nonsense mutation (W520X) in the third transmembrane domain of the TSHR that causes the lack of the C-terminus portion of the receptor. The functional significance of this variation was assessed in vitro. Material/subject and methods: The W520X mutation was introduced into the pSVL vector containing the wild-type sequence of TSHR gene. Wild-type and mutated vectors were expressed in Chinese Hamster Ovary (CHO) cells, and cAMP, inositol phosphate (IP), immunofluorescence and FACS analyses were performed. Results: Transfection with pSVL-TSHR vector induced basal cAMP and IP production in the absence of TSH stimulation, indicating a constitutive activity for the TSHR. An impairment of receptor function was demonstrated by the observation that cells expressing the mutant TSHR exhibited a lower second messenger production with respect to the wild-type, despite a normal expression of the receptor at the cell surface. Conclusions: The mechanism through which the W520X mutation exerts its effect is more likely haploinsufficiency rather than a dominant-negative effect. This could explain the phenotype of our patient, who has a hormonal pattern in the range of a mild subclinical hypothyroidism, without an overt disease phenotype.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    4
    Citations
    NaN
    KQI
    []