Drug nanoparticles by emulsion-freeze-drying via the employment of branched block copolymer nanoparticles.

2016 
A large percentage of drug compounds exhibit low water solubility and hence low bioavailability and therapeutic efficacy. This may be addressed by preparation of drug nanoparticles, leading to enhanced dissolution rate and direct use for treatment. Various methods have been developed to produce drug nanocrystals, including wet milling, homogenization, solution precipitation, emulsion diffusion, and the recently developed emulsion freeze-drying. The drawback for these methods may include difficult control in particles size, use of surfactants & polymer, and low ratio of drug to stabilizer. Here, biocompatible branched block copolymer nanoparticles with lightly-crosslinked hydrophobic core and hydrophilic surface groups are synthesized by the direct monomer-to-particle methodology, characterized, and then used as scaffold polymer/surfactant to produce drug nanoparticles via the emulsion-freeze-drying approach. This method can be used for model organic dye and different poorly water-soluble drugs. Aqueous drug nanoparticle dispersions can be obtained with high ratio of drug to stabilizer and relatively uniform nanoparticle sizes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    17
    Citations
    NaN
    KQI
    []