Fabrication of BSCF-based mixed oxide ionic-electronic conducting multi-layered membrane by sequential electrophoretic deposition process

2020 
Abstract The Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF)-based multi-layered oxygen separation membrane was fabricated by the sequential electrophoretic deposition (EPD) process. A thin porous/dense bi-layer of BSCF was formed on a thick porous support of BSCF. The porous support prepared by a sacrificial template method using BSCF powder mixed with wheat starch (30 wt%) as a pore-forming agent, followed by uniaxial pressing and low-temperature sintering, was directly used as an EPD electrode. A thin BSCF layer was first formed on the porous support, and then a thin BSCF + PMMA (polymethyl methacrylate) layer was sequentially formed on the thin BSCF layer using a bimodal suspension of BSCF and PMMA. A 30-µm thin porous/dense bi-layer of BSCF of which the total thickness was obtained by optimizing the processes of EPD and subsequent co-sintering. The oxygen separation performance of 3.7 ml (STP) min-1 cm-2 at 860 °C was achieved for the BSCF-based multi-layered oxygen separation membrane.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    1
    Citations
    NaN
    KQI
    []