Magnetic microbot design framework for antiangiogenic tumor therapy

2015 
This paper presents an optimal design strategy for magnetic targeting of therapeutic drugs. In this study, to maximize the effect of the treatment and minimize adverse effects on the patient, mathematical models have been developed to find the number and the size of the boluses with respect to the growth of a tumor. Using these models, control strategies are developed to establish a schedule that allows the physician to administer the medication while respecting borne by the patient doses. To transport the drugs, we use therapeutic magnetic boluses composed of magnetic particle aggregates as navigable agents controlled by magnetic gradients. Based on the optimal design of the bolus, an experimental investigation is carried out in millimeter-sized fluidic artery vessels to demonstrate the steerability of the magnetic bolus under different velocity, shear-stress and trajectory constraints with a laminar viscous fluidic environment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    6
    Citations
    NaN
    KQI
    []