Energy Reconstruction Methods in the IceCube Neutrino Telescope

2013 
Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for $\nu_e$ and $\nu_\mu$ charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of $\sim 15\%$ above 10 TeV.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    137
    Citations
    NaN
    KQI
    []