Investigation of wall heat transfer and thermal stratification under engine-relevant conditions using DNS

2016 
Unsteady wall heat transfer and thermal stratification during the compression stroke under engine relevant conditions are investigated using direct numerical simulations (DNS). In order to avoid artificial initial and boundary conditions the initial conditions are obtained from a separate DNS of the intake stroke involving thermal and composition mixing. The dynamically changing thermodynamic properties were found to strongly affect turbulence and wall heat transfer during the compression stroke. The increasing pressure results in a strongly reduced kinematic viscosity, and thus in significantly reduced length scales in the flow and temperature fields towards the top dead center (TDC). This has a direct impact on wall heat transfer, since reduced length scales lead to increased temperature gradients at the walls. Hence the heat transfer coefficient, which expresses the hydrodynamic influence on the heat transfer, increases by a factor of approximately five during compression. For the simulated conditions,...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    31
    Citations
    NaN
    KQI
    []