Changes in kinetics of cerebral auto-regulation with head-down bed rest.

2002 
Thoraco-cephalic fluid shift induced by weightlessness may influence cerebral autoregulation. Our objective was to assess effects of simulated weightlessness by a 7-day head-down bed rest (HDBR) on the kinetics of cerebral blood flow (CBF) autoregulation in eight healthy women (27.9 ± 0.9 years). This was studied by transcranial Doppler (TCD) of the middle cerebral artery (MCA) during the sudden decrease in blood pressure (BP) induced by quickly deflating thigh cuff after a 4-min arterial occlusion before (D - 3), during (D2, D5) and after the HDBR (D + 1). BP (Finapres) and MCA maximal blood flow velocity were continuously recorded. Cerebrovascular resistance (CR) was expressed as the ratio of mean BP to mean MCA velocity. The CR slope was defined as changes in CR per second during the BP decrease. The magnitude of the relative decrease in mean BP and MCA velocity as well as the CR slope did not differ significantly before, during and after the HDBR, showing no major impairment of cerebral autoregulation during short-term HDBR. The time to maximum decrease in CR (Tl in s), corresponding to the maximum vasodilation was reduced on D2 (7.2 ± 0.6) versus D - 3 (9.9 ± 1.3), D5 (9.6 ± 0.8) and R + 1 (11.7 ± 1.1) probably as a result of the fluid shift. We also looked if the responses during the thigh cuff release differed in women according to their tolerance to the 10 min stand test performed after the HDBR: T1 was larger in the five women who presented orthostatic intolerance suggesting that some differences in cerebral autoregulatory responses may be related to orthostatic intolerance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    20
    Citations
    NaN
    KQI
    []