Facile synthesis and functionalization of color-tunable Ln3+-doped KGdF4 nanoparticles on a microfluidic platform
2019
Abstract Hyaluronic acid (HA)-functionalized lanthanide-doped KGdF4 nanoparticles were synthesized through two steps on a microfluidic platform. This microfluidic synthesis method allows better control of experimental conditions with lower labor and energy input than traditional beaker synthesis methods for large-scale production of nanoparticles with higher uniformity. First, Ln3+-doped KGdF4 nanoparticles were ultrafast (in minutes) and continuously synthesized using a four-inlets microfluidic chip at room temperature. Then, HA is continuously functionalized on the surface of Ln3+-doped KGdF4 nanoparticles using a T-shape chip through electrostatic adsorption. The synthesized nanoparticles show good uniformity, high biocompatibility, targeted cellular uptake, photoluminescence (PL) and magnetic resonance (MR) properties. This work highlights the potential of microfluidic platform for the development of multifunctional nanoparticles in biomedicine.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
38
References
9
Citations
NaN
KQI