A deep learning approach for power system knowledge discovery based on multitask learning

2019 
Power system security assessment is an important and challenging problem. Large variations in loads and power generation present increased risks to the secure operation of power systems. This study proposes a distributed deep network structure for power system security knowledge discovery based on multitask learning to monitor and control power grids more properly and effectively. First, a deep neural network structure based on the deep belief network (DBN) is designed to non-linearly extract deep and abstract features layer-by-layer for total transfer capability (TTC) regression tasks. Then, a distributed training algorithm for the deep structure is developed to accelerate the training process. Furthermore, multitask learning is adopted by grouping and training-related tasks together to improve the task performance. Finally, the accuracy and efficiency of the deep structure are evaluated using the Guangdong Power Grid in China. The simulation results demonstrate that the proposed model can outperform the existing shallow models in terms of accuracy and stability and can meet the requirements of online computing efficiency.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    4
    Citations
    NaN
    KQI
    []