Closed-Loop Neurostimulators: A Survey and A Seizure-Predicting Design Example for Intractable Epilepsy Treatment

2017 
First, existing commercially available open-loop and closed-loop implantable neurostimulators are reviewed and compared in terms of their targeted application, physical size, system-level features, and performance as a medical device. Next, signal processing algorithms as the primary strength point of the closed-loop neurostimulators are reviewed, and various design and implementation requirements and trade-offs are discussed in details along with quantitative examples. The review results in a set of guidelines for algorithm selection and evaluation. Second, the implementation of an inductively-powered seizure-predicting microsystem for monitoring and treatment of intractable epilepsy is presented. The miniaturized system is comprised of two miniboards and a power receiver coil. The first board hosts a 24-channel neurostimulator system on chip [15] fabricated in a $0.13\;\mu \text{m}$ CMOS technology and performs neural recording, on-chip digital signal processing, and electrical stimulation. The second board communicates recorded brain signals as well as signal processing results wirelessly. The multilayer flexible coil receives inductively-transmitted power. The system is sized at 2 $\times$ 2 $\times$ 0.7 $\text{cm}^3$ and weighs 6 g. The approach is validated in the control of chronic seizures in vivo in freely moving rats.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    52
    Citations
    NaN
    KQI
    []